Categorical crepant resolutions of higher dimensional simple singularities

Yujiro Kawamata
University of Tokyo

July 7, 2009
Derived category of coherent sheaves

- X: smooth projective algebraic variety over a field k.
 (algebraic and geometric structure on a set)
Derived category of coherent sheaves

- X: smooth projective algebraic variety over a field k. (algebraic and geometric structure on a set)
- $\text{Coh}(X)$: abelian category of coherent sheaves on X. (a set with k-vector spaces $\text{Hom}(a, b)$ of morphisms between objects a, b)
Derived category of coherent sheaves

- X: smooth projective algebraic variety over a field k. (algebraic and geometric structure on a set)
- $\text{Coh}(X)$: abelian category of coherent sheaves on X. (a set with k-vector spaces $\text{Hom}(a, b)$ of morphisms between objects a, b)
- X and $\text{Coh}(X)$ are categorically equivalent. $x \in X$ corresponds to \mathcal{O}_x (skyscraper sheaf). Algebraic structure is recovered from Hom's.
Derived category of coherent sheaves

- X: smooth projective algebraic variety over a field k. (algebraic and geometric structure on a set)
- $\text{Coh}(X)$: abelian category of coherent sheaves on X. (a set with k-vector spaces $\text{Hom}(a, b)$ of morphisms between objects a, b)
- X and $\text{Coh}(X)$ are categorically equivalent. $x \in X$ corresponds to \mathcal{O}_x (skyscraper sheaf). algebraic structure is recovered from Hom’s.
- $D^b(\text{Coh}(X))$: bounded derived category. (homotopy category of bounded complexes): quasi-isomorphism becomes isomorphism.
Derived category of coherent sheaves

- X: smooth projective algebraic variety over a field k. (algebraic and geometric structure on a set)
- $\text{Coh}(X)$: abelian category of coherent sheaves on X. (a set with k-vector spaces $\text{Hom}(a, b)$ of morphisms between objects a, b)
- X and $\text{Coh}(X)$ are categorically equivalent. $x \in X$ corresponds to \mathcal{O}_x (skyscraper sheaf). algebraic structure is recovered from Hom’s.
- $D^b(\text{Coh}(X))$: bounded derived category. (homotopy category of bounded complexes): quasi-isomorphism becomes isomorphism.

 triangulated category: shift functor $[1]$, distinguished triangles $a \to b \to c \to a[1]$ instead of exact sequences $0 \to a \to b \to c \to 0$.
Derived category of coherent sheaves

- different (but related) varieties may have equivalent derived categories. (more symmetries)
Derived category of coherent sheaves

- different (but related) varieties may have equivalent derived categories. (more symmetries)
- Coh(X) is a heart of $D^b(\text{Coh}(X))$ w.r.t. t-structure.
Derived category of coherent sheaves

- different (but related) varieties may have equivalent derived categories. (more symmetries)
- Coh(X) is a heart of $D^b(\text{Coh}(X))$ w.r.t. t-structure. There are many hearts in a triangulated category.
- Example: $D^b(\text{Coh}(\mathbb{P}^n)) \cong D^b(\text{Mod-}R)$ for a finite dimensional non-commutative k-algebra R (representations of a quiver algebra).
1. finite type: $\dim_k \sum_{p \in \mathbb{Z}} \text{Hom}^p(a, b) < \infty$.

$a, b \in D^b(\text{Coh}(X))$, $\text{Hom}^p(a, b) = \text{Hom}(a, b[p])$. $b[p]$: shift of b to the left by p
1. **finite type**: $\dim_k \sum_{p \in \mathbb{Z}} \text{Hom}^p(a, b) < \infty$.

 $a, b \in D^b(\text{Coh}(X))$, $\text{Hom}^p(a, b) = \text{Hom}(a, b[p])$. $b[p]$: shift of b to the left by p

2. **saturated**: \forall exact functor $F : D^b(\text{Coh}(X)) \rightarrow D^b(\text{Coh}(P))$, $\exists a \in D^b(\text{Coh}(X))$ s.t. $F(b) \cong \text{Hom}(a, b)$ (representable)
1. **finite type**: $\dim_k \sum_{p \in \mathbb{Z}} \text{Hom}^p(a, b) < \infty$.
 $a, b \in D^b(\text{Coh}(X))$, $\text{Hom}^p(a, b) = \text{Hom}(a, b[p])$. $b[p]$: shift of b to the left by p.

2. **saturated**: \forall exact functor $F : D^b(\text{Coh}(X)) \to D^b(\text{Coh}(P))$, $\exists a \in D^b(\text{Coh}(X))$ s.t. $F(b) \cong \text{Hom}(a, b)$ (representable).

3. **Serre functor**: $S \in \text{Aut}(D^b(\text{Coh}(X)))$,
 $\text{Hom}(a, b) \cong \text{Hom}(b, S(a))^*$.
 $S(a) \cong a \otimes \omega_X[\dim X]$.

Yusuke Okamura University of Tokyo Categorical crepant resolutions of higher dimensional simple sing
1. finite type: $\dim_k \sum_{p \in \mathbb{Z}} \text{Hom}^p(a, b) < \infty$.
 $a, b \in D^b(\text{Coh}(X))$, $\text{Hom}^p(a, b) = \text{Hom}(a, b[p])$. $b[p]$: shift of b to the left by p

2. saturated: \forall exact functor $F : D^b(\text{Coh}(X)) \to D^b(\text{Coh}(P))$, $\exists a \in D^b(\text{Coh}(X))$ s.t. $F(b) \cong \text{Hom}(a, b)$ (representable)

3. Serre functor: $S \in \text{Aut}(D^b(\text{Coh}(X)))$,
 $\text{Hom}(a, b) \cong \text{Hom}(b, S(a))^*$.
 $S(a) \cong a \otimes \omega_X[\dim X]$.

Remark: smoothness of X is essential.
$x \in X$ singular point, then $\text{Hom}(a, a[p]) \neq 0$, $\forall p \geq 0$.
1. **finite type**: \(\dim_k \sum_{p \in \mathbb{Z}} \operatorname{Hom}^p(a, b) < \infty. \)

 \(a, b \in D^b(\text{Coh}(X)), \operatorname{Hom}^p(a, b) = \operatorname{Hom}(a, b[p]). \ b[p]: \text{shift of } b \text{ to the left by } p \)

2. **saturated**: \(\forall \) exact functor \(F: D^b(\text{Coh}(X)) \to D^b(\text{Coh}(P)) \),

 \(\exists a \in D^b(\text{Coh}(X)) \) s.t. \(F(b) \cong \operatorname{Hom}(a, b) \) (representable)

3. **Serre functor**: \(S \in \text{Aut}(D^b(\text{Coh}(X))) \),

 \(\operatorname{Hom}(a, b) \cong \operatorname{Hom}(b, S(a))^\ast. \)

 \(S(a) \cong a \otimes \omega_X[\dim X]. \)

Remark: smoothness of \(X \) is essential.

\(x \in X \) singular point, then \(\operatorname{Hom}(a, a[p]) \neq 0, \forall p \geq 0. \)

Example: If \(X \) is \(n \)-dim Calabi-Yau variety, \(S \cong [n] \) \((n \text{-Calabi-Yau category})\)
Minimal models of surfaces

- X: algebraic surface; smooth projective variety of dimension 2.
- C: a (-1)-curve; $C \cong \mathbb{P}^1$, $N_{C/X} \cong \mathcal{O}_C(-1)$.
Minimal models of surfaces

- X: algebraic surface; smooth projective variety of dimension 2.
- C: a (-1)-curve; $C \cong \mathbb{P}^1$, $N_{C/X} \cong \mathcal{O}_C(-1)$.
- Castelnuovo’s contraction theorem: $f: X \to X'$, X' is again smooth projective, $f(C) = \{P\}$, $X \setminus C \cong X' \setminus \{P\}$.
Minimal models of surfaces

- X: algebraic surface; smooth projective variety of dimension 2.
- C: a (-1)-curve; $C \cong \mathbb{P}^1$, $N_{C/X} \cong \mathcal{O}_C(-1)$.
- Castelnuovo’s contraction theorem: $f : X \to X'$, X' is again smooth projective, $f(C) = \{P\}$, $X \setminus C \cong X' \setminus \{P\}$.
- *minimal model*: no more (-1)-curve
Minimal models of surfaces and exceptional objects

- $c_0 = \mathcal{O}_C(-1) \in D^b(\text{Coh}(X))$: $\sum_{p \in \mathbb{Z}} \text{Hom}^p(c_0, c_0) \cong k$ as graded rings (exceptional object)
Minimal models of surfaces and exceptional objects

- $c_0 = \mathcal{O}_C(-1) \in D^b(\text{Coh}(X))$: $\sum_{p \in \mathbb{Z}} \text{Hom}^p(c_0, c_0) \cong k$ as graded rings (exceptional object)

- $f_* c_0 \cong 0$.
Minimal models of surfaces and exceptional objects

- $c_0 = \mathcal{O}_C(-1) \in D^b(\text{Coh}(X))$: $\sum_{p \in \mathbb{Z}} \text{Hom}^p(c_0, c_0) \cong k$ as graded rings (exceptional object)
- $f_*c_0 \cong 0$.
- $D^b(\text{Coh}(X')) \cong \{ b \in D^b(\text{Coh}(X)) | \text{Hom}^p(b, c_0) = 0, \forall p \}$ (left orthogonal complement of $\langle c_0 \rangle$: $b \perp c_0[p]$)
Minimal models of surfaces and exceptional objects

- $c_0 = \mathcal{O}_C(-1) \in D^b(\text{Coh}(X))$: $\sum_{p \in \mathbb{Z}} \text{Hom}^p(c_0, c_0) \cong k$ as graded rings (exceptional object)
- $f_* c_0 \cong 0$.
- $D^b(\text{Coh}(X')) \cong \{ b \in D^b(\text{Coh}(X)) \mid \text{Hom}^p(b, c_0) = 0, \forall p \}$ (left orthogonal complement of $\langle c_0 \rangle$: $b \perp c_0[p]$)
- $\forall a \in D^b(\text{Coh}(X))$, $b \rightarrow a \rightarrow c \rightarrow b[1]$. $c \in \langle c_0 \rangle$, $b = f^* f_* a \in D^b(\text{Coh}(X'))$.

Semi-orthogonal decomposition

semi-orthogonal decomposition [Bondal]: \(A = \langle C, B \rangle, \ B \) and \(C \) are triangulated subcategories (stable under distinguished triangles and shifts).
Semi-orthogonal decomposition

semi-orthogonal decomposition [Bondal]: $\mathcal{A} = \langle \mathcal{C}, \mathcal{B} \rangle$, \mathcal{B} and \mathcal{C} are triangulated subcategories (stable under distinguished triangles and shifts).

1. $\mathcal{B} \perp \mathcal{C}$: $\text{Hom}(b, c) = 0$, $\forall b \in \mathcal{B}$, $\forall c \in \mathcal{C}$.
2. $\forall a \in \mathcal{A}$, $b \rightarrow a \rightarrow c \rightarrow b[1]$ distinguished triangle.
Semi-orthogonal decomposition

semi-orthogonal decomposition [Bondal]: \(A = \langle C, B \rangle \), \(B \) and \(C \) are triangulated subcategories (stable under distinguished triangles and shifts).

1. \(B \perp C \): \(\text{Hom}(b, c) = 0 \), \(\forall b \in B \), \(\forall c \in C \).
2. \(\forall a \in A \), \(b \rightarrow a \rightarrow c \rightarrow b[1] \) distinguished triangle.

Example: \(D^b(\text{Coh}(X)) = \langle c_0, D^b(\text{Coh}(X')) \rangle \).
Semi-orthogonal decomposition

semi-orthogonal decomposition [Bondal]: \(A = \langle C, B \rangle \), \(B \) and \(C \) are triangulated subcategories (stable under distinguished triangles and shifts).

1. \(B \perp C \): \(\text{Hom}(b, c) = 0 \), \(\forall b \in B \), \(\forall c \in C \).
2. \(\forall a \in A \), \(b \to a \to c \to b[1] \) distinguished triangle.

- Example: \(D^b(\text{Coh}(X)) = \langle c_0, D^b(\text{Coh}(X')) \rangle \).
- Example: \(D^b(\text{Coh}(\mathbb{P}^n)) = \langle \mathcal{O}(-n), \mathcal{O}(-n + 1), \ldots, \mathcal{O} \rangle \) (full exceptional collection) [Beilinson]
- Toric varieties have also full exceptional collections.
Semi-orthogonal decomposition

semi-orthogonal decomposition [Bondal]: $\mathcal{A} = \langle \mathcal{C}, \mathcal{B} \rangle$, \mathcal{B} and \mathcal{C} are triangulated subcategories (stable under distinguished triangles and shifts).

1. $\mathcal{B} \perp \mathcal{C}$: $\text{Hom}(b, c) = 0$, $\forall b \in \mathcal{B}$, $\forall c \in \mathcal{C}$.
2. $\forall a \in \mathcal{A}$, $b \to a \to c \to b[1]$ distinguished triangle.

- Example: $D^b(\text{Coh}(X)) = \langle c_0, D^b(\text{Coh}(X')) \rangle$.
- Example: $D^b(\text{Coh}(\mathbb{P}^n)) = \langle \mathcal{O}(-n), \mathcal{O}(-n + 1), \ldots, \mathcal{O} \rangle$ (*full exceptional collection*) [Beilinson]
- Toric varieties have also full exceptional collections.
- If \mathcal{A} is finite type, saturated, Serre functor, so are \mathcal{B} and \mathcal{C}.
Semi-orthogonal decomposition

semi-orthogonal decomposition [Bondal]: \(\mathcal{A} = \langle \mathcal{C}, \mathcal{B} \rangle \), \(\mathcal{B} \) and \(\mathcal{C} \) are triangulated subcategories (stable under distinguished triangles and shifts).

1. \(\mathcal{B} \perp \mathcal{C} : \text{Hom}(b, c) = 0, \forall b \in \mathcal{B}, \forall c \in \mathcal{C} \).
2. \(\forall a \in \mathcal{A}, b \rightarrow a \rightarrow c \rightarrow b[1] \) distinguished triangle.

- Example: \(D^b(\text{Coh}(X)) = \langle c_0, D^b(\text{Coh}(X')) \rangle \).
- Example: \(D^b(\text{Coh}(\mathbb{P}^n)) = \langle \mathcal{O}(-n), \mathcal{O}(-n + 1), \ldots, \mathcal{O} \rangle \) (full exceptional collection) [Beilinson]
- Toric varieties have also full exceptional collections.
- If \(\mathcal{A} \) is finite type, saturated, Serre functor, so are \(\mathcal{B} \) and \(\mathcal{C} \).
- \(S_{\mathcal{B}} = j^! S_{\mathcal{A} j_*}, j_* : \mathcal{B} \rightarrow \mathcal{A} \) embedding, \(j^! : \mathcal{A} \rightarrow \mathcal{B} \) right adjoint functor.
Semi-orthogonal decomposition

semi-orthogonal decomposition [Bondal]: \(\mathcal{A} = \langle \mathcal{C}, \mathcal{B} \rangle \), \(\mathcal{B} \) and \(\mathcal{C} \) are triangulated subcategories (stable under distinguished triangles and shifts).

1. \(\mathcal{B} \perp \mathcal{C} \): \(\text{Hom}(b, c) = 0 \), \(\forall b \in \mathcal{B} \), \(\forall c \in \mathcal{C} \).
2. \(\forall a \in \mathcal{A}, b \to a \to c \to b[1] \) distinguished triangle.

- Example: \(D^b(\text{Coh}(X)) = \langle c_0, D^b(\text{Coh}(X')) \rangle \).
- Example: \(D^b(\text{Coh}(\mathbb{P}^n)) = \langle \mathcal{O}(-n), \mathcal{O}(-n + 1), \ldots, \mathcal{O} \rangle \) (full exceptional collection) [Beilinson]

- Toric varieties have also full exceptional collections.
- If \(\mathcal{A} \) is finite type, saturated, Serre functor, so are \(\mathcal{B} \) and \(\mathcal{C} \).
- \(S_\mathcal{B} = j^! S_\mathcal{A} j_* \), \(j_* : \mathcal{B} \to \mathcal{A} \) embedding, \(j^! : \mathcal{A} \to \mathcal{B} \) right adjoint functor.
- Remark: \(D^b(\text{Coh}(X)) \) has no *orthogonal* decomposition.
Semi-orthogonal decomposition

semi-orthogonal decomposition [Bondal]: \(\mathcal{A} = \langle \mathcal{C}, \mathcal{B} \rangle \), \(\mathcal{B} \) and \(\mathcal{C} \) are triangulated subcategories (stable under distinguished triangles and shifts).

1. \(\mathcal{B} \perp \mathcal{C} \): \(\text{Hom}(b, c) = 0, \forall b \in \mathcal{B}, \forall c \in \mathcal{C} \).
2. \(\forall a \in \mathcal{A}, b \rightarrow a \rightarrow c \rightarrow b[1] \) distinguished triangle.

- Example: \(D^b(\text{Coh}(X)) = \langle c_0, D^b(\text{Coh}(X')) \rangle \).
- Example: \(D^b(\text{Coh}(\mathbb{P}^n)) = \langle \mathcal{O}(-n), \mathcal{O}(-n + 1), \ldots, \mathcal{O} \rangle \) (full exceptional collection) [Beilinson]
- Toric varieties have also full exceptional collections.
- If \(\mathcal{A} \) is finite type, saturated, Serre functor, so are \(\mathcal{B} \) and \(\mathcal{C} \).
- \(S_\mathcal{B} = j^! S_\mathcal{A} j_* \), \(j_* : \mathcal{B} \to \mathcal{A} \) embedding, \(j^! : \mathcal{A} \to \mathcal{B} \) right adjoint functor.
- Remark: \(D^b(\text{Coh}(X)) \) has no orthogonal decomposition.
- Corollary: If \(n \)-Calabi-Yau category, no SOD.
- Proof: If \(\mathcal{B} \perp \mathcal{C} \), then \(\mathcal{C} \perp \mathcal{B} \).
Minimal model program

\[
X = X_0 \rightarrow X_1 \rightarrow \cdots \rightarrow X_m
\]

\[f_i : X_{i-1} \rightarrow X_i\] birational map, one of the following:

1. (D): contraction of codimension 1 subvariety (\textit{divisorial contraction})

2. (F): isomorphism in codimension 1 (\textit{flip})
Minimal model program

\[X = X_0 \rightarrow X_1 \rightarrow \cdots \rightarrow X_m \]
\[f_i : X_{i-1} \rightarrow X_i \text{ birational map, one of the following:} \]

1. (D): contraction of codimension 1 subvariety (\textit{divisorial contraction})

2. (F): isomorphism in codimension 1 (\textit{flip})

- Even if \(X \) is smooth, \(X_i \) are in general singular.
- Canonical divisors \(K_{X_i} \) are \(\mathbb{Q} \)-Cartier: \(m_i K_{X_i} \) are Cartier divisors.
- pull-backs and intersection numbers are defined.
Minimal model program

\[X = X_0 \longrightarrow X_1 \longrightarrow \cdots \longrightarrow X_m \]

\(f_i : X_{i-1} \longrightarrow X_i \) birational map, one of the following:

1. (D): contraction of codimension 1 subvariety \((\text{divisorial contraction})\)

2. (F): isomorphism in codimension 1 \((\text{flip})\)

- Even if \(X \) is smooth, \(X_i \) are in general singular.
- Canonical divisors \(K_{X_i} \) are \(\mathbb{Q} \)-Cartier: \(m_i K_{X_i} \) are Cartier divisors.
- pull-backs and intersection numbers are defined.
- Canonical divisor decreases in both cases: \(\mu_{i-1}^* K_{X_{i-1}} > \mu_i^* K_{X_i} \)
on a common resolution.
One of the following output:

1. (MM): K_{X_m} is nef, $(K_{X_m} \cdot C) \geq 0$, $\forall C$. \textit{(minimal model)}

2. (MF): $f : X_m \to Y$, $(K_{X_m} \cdot C) < 0$, $\dim Y < \dim X_m$, $\forall C$ in a fiber of f. \textit{(Mori fiber space)}
One of the following output:

1. (MM): K_{X_m} is nef, $(K_{X_m} \cdot C) \geq 0, \forall C$. (*minimal model*)

2. (MF): $f : X_m \to Y$, $(K_{X_m} \cdot C) < 0$, dim $Y <$ dim X_m, $\forall C$ in a fiber of f. (*Mori fiber space*)

- existence proved in dim ≤ 4 or if X general type
 [Birkar-Cascini-Hacon-McKernan]
One of the following output:

1. (MM): K_{X_m} is nef, $(K_{X_m} \cdot C) \geq 0, \forall C$. \textit{(minimal model)}

2. (MF): \(f : X_m \to Y, (K_{X_m} \cdot C) < 0, \dim Y < \dim X_m, \forall C \) in a fiber of \(f \). \textit{(Mori fiber space)}

- existence proved in $\dim \leq 4$ or if X general type
 [Birkar-Cascini-Hacon-McKernan]
- \textit{relative version} of MMP over S: starting from $h : X \to S$, all maps are over S.
One of the following output:

1. (MM): K_{X_m} is nef, $(K_{X_m} \cdot C) \geq 0$, $\forall C$. *(minimal model)*

2. (MF): $f : X_m \to Y$, $(K_{X_m} \cdot C) < 0$, dim $Y < $ dim X_m, $\forall C$ in a fiber of f. *(Mori fiber space)*

- existence proved in dim ≤ 4 or if X general type
 [Birkar-Cascini-Hacon-McKernan]

- *relative version* of MMP over S: starting from $h : X \to S$, all maps are over S.

- Example: If $h : X \to S$ arbitrary resolution of singularities, a relative minimal model $h_m : X_m \to S$ is a *minimal resolution*.
MMP and semi-orthogonal decomposition (Example 1)

- $f : X \to X'$ blowing-up of a smooth variety along a smooth subvariety $E' \subset X'$. (typical example of a divisorial contraction).
MMP and semi-orthogonal decomposition (Example 1)

- $f : X \to X'$ blowing-up of a smooth variety along a smooth subvariety $E' \subset X'$. (typical example of a divisorial contraction).

- $E = f^{-1}(E')$ exceptional divisor is a \mathbb{P}^n-bundle over E', $n + 1 = \text{codim}_{X'} E'$.
MMP and semi-orthogonal decomposition (Example 1)

- \(f : X \rightarrow X' \) blowing-up of a smooth variety along a smooth subvariety \(E' \subset X' \). (typical example of a divisorial contraction).
- \(E = f^{-1}(E') \) exceptional divisor is a \(\mathbb{P}^n \)-bundle over \(E' \),
 \(n + 1 = \text{codim}_{X'} E' \).
- Canonical divisors: \(K_X - f^* K_{X'} = nE \).
MMP and semi-orthogonal decomposition (Example 1)

- $f : X \to X'$ blowing-up of a smooth variety along a smooth subvariety $E' \subset X'$. (typical example of a divisorial contraction).
- $E = f^{-1}(E')$ exceptional divisor is a \mathbb{P}^n-bundle over E', $n + 1 = \text{codim}_{X'}E'$.
- Canonical divisors: $K_X - f^*K_{X'} = nE$.
- Corresponding SOD: For $f_E = f|_E$, $i : E \to X$, $D^b(\text{Coh}(X)) = \langle i_*(f_E^*D^b(\text{Coh}(E'))) \otimes O_E(-n), \ldots, i_*(f_E^*D^b(\text{Coh}(E'))) \otimes O_E(-1), f^*D^b(\text{Coh}(X')) \rangle$. [Bondal-Orlov]
\(\tilde{X} \) cone over Segre variety \(\mathbb{P}^n \times \mathbb{P}^{n'} \subset \mathbb{P}^{(n+1)(n'+1)-1}, \ n > n'. \)
MMP and semi-orthogonal decomposition (Example 2)

- \tilde{X} cone over Segre variety $\mathbb{P}^n \times \mathbb{P}^{n'} \subset \mathbb{P}^{(n+1)(n'+1)-1}$, $n > n'$.
- $\tilde{X} \to \bar{X}$: blowing-up at the vertex, $E \cong \mathbb{P}^n \times \mathbb{P}^{n'}$ exceptional divisor.
MMP and semi-orthogonal decomposition (Example 2)

- \tilde{X} cone over Segre variety $\mathbb{P}^n \times \mathbb{P}^{n'} \subset \mathbb{P}^{(n+1)(n'+1)-1}$, $n > n'$.
- $\tilde{X} \to \bar{X}$: blowing-up at the vertex, $E \cong \mathbb{P}^n \times \mathbb{P}^{n'}$ exceptional divisor.
 - $\mu : \tilde{X} \to X$ contraction of E collapsing $\mathbb{P}^{n'}$'s. $\mu(E) \cong \mathbb{P}^n$.
 - $\mu' : \tilde{X} \to X'$ contraction of E collapsing \mathbb{P}^n's $\mu'(E) \cong \mathbb{P}^{n'}$.
 - $f : X \dashrightarrow X'$ (typical example of a flip)
MMP and semi-orthogonal decomposition (Example 2)

- \tilde{X} cone over Segre variety $\mathbb{P}^n \times \mathbb{P}^{n'} \subset \mathbb{P}^{(n+1)(n'+1)-1}$, $n > n'$.
- $\tilde{X} \to \bar{X}$: blowing-up at the vertex, $E \cong \mathbb{P}^n \times \mathbb{P}^{n'}$ exceptional divisor.
 - $\mu : \tilde{X} \to X$ contraction of E collapsing $\mathbb{P}^{n'}$'s, $\mu(E) \cong \mathbb{P}^n$.
 - $\mu' : \tilde{X} \to X'$ contraction of E collapsing \mathbb{P}^n's, $\mu'(E) \cong \mathbb{P}^{n'}$.
 - $f : X \dashrightarrow X'$ (typical example of a flip)
- Canonical divisors: $\mu^*K_X - (\mu')^*K_{X'} = (n - n')E$.
MMP and semi-orthogonal decomposition (Example 2)

- \tilde{X} cone over Segre variety $\mathbb{P}^n \times \mathbb{P}^{n'} \subset \mathbb{P}^{(n+1)(n'+1)-1}$, $n > n'$.
- $\tilde{X} \to \bar{X}$: blowing-up at the vertex, $E \cong \mathbb{P}^n \times \mathbb{P}^{n'}$ exceptional divisor.
 - $\mu : \bar{X} \to X$ contraction of E collapsing $\mathbb{P}^{n'}$'s. $\mu(E) \cong \mathbb{P}^n$.
 - $\mu' : \tilde{X} \to X'$ contraction of E collapsing \mathbb{P}^n's $\mu'(E) \cong \mathbb{P}^{n'}$.
 - $f : X \dashrightarrow X'$ (typical example of a flip)
- Canonical divisors: $\mu^*K_X - (\mu')^*K_{X'} = (n - n')E$.
- Corresponding SOD: $D^b(\text{Coh}(X)) = \langle i_*\mathcal{O}_{\mu(E)}(-n + n'), \ldots, i_*\mathcal{O}_{\mu(E)}(-1), \mu_*(\mu')^*D^b(\text{Coh}(X')) \rangle$.
 [Bondal-Orlov]
MMP and semi-orthogonal decomposition (Example 2)

- \tilde{X} cone over Segre variety $\mathbb{P}^n \times \mathbb{P}^{n'} \subset \mathbb{P}^{(n+1)(n'+1)-1}$, $n > n'$.

- $\tilde{X} \to \tilde{X}$: blowing-up at the vertex, $E \cong \mathbb{P}^n \times \mathbb{P}^{n'}$ exceptional divisor.

 $\mu : \tilde{X} \to X$ contraction of E collapsing $\mathbb{P}^{n'}$s. $\mu(E) \cong \mathbb{P}^n$.

 $\mu' : \tilde{X} \to X'$ contraction of E collapsing \mathbb{P}^n's $\mu'(E) \cong \mathbb{P}^{n'}$.

 $f : X \dashrightarrow X'$ (typical example of a flip)

- Canonical divisors: $\mu^*K_X - (\mu')^*K_{X'} = (n - n')E$.

- Corresponding SOD: $D^b(\text{Coh}(X)) = \langle i_* \mathcal{O}_\mu(E)(-n + n'), \ldots, i_* \mathcal{O}_\mu(E)(-1), \mu_*(\mu')^* D^b(\text{Coh}(X')) \rangle$.
 [Bondal-Orlov]

- If $n = n'$, $f : X \dashrightarrow X'$ is a flop.

- $\mu_*(\mu')^* : D^b(\text{Coh}(X)) \cong D^b(\text{Coh}(X'))$.
DK Conjecture

- D and K should be parallel.
DK Conjecture

- D and K should be parallel.
- **DK Conjecture**: Let $f : X \rightarrow X'$ be a birational map s.t. $\mu^* K_X \geq (\mu')^* K_{X'}$ on a common resolution.
DK Conjecture

- D and K should be parallel.
- **DK Conjecture**: Let $f : X \to X'$ be a birational map s.t.
 $\mu^* K_X \geq (\mu')^* K_{X'}$, on a common resolution.
- Then $D^b(\text{Coh}(X)) \cong \langle \mathcal{C}, D^b(\text{Coh}(X')) \rangle$ for some \mathcal{C}.
D and K should be parallel.

DK Conjecture: Let $f : X \rightarrow X'$ be a birational map s.t. $\mu^* K_X \geq (\mu')^* K_{X'}$ on a common resolution.

Then $D^b(\text{Coh}(X)) \cong \langle C, D^b(\text{Coh}(X')) \rangle$ for some C.

In particular, if $\mu^* K_X = (\mu')^* K_{X'}$, then $D^b(\text{Coh}(X)) \cong D^b(\text{Coh}(X'))$.
Variety with quotient singularities

- X a projective variety with only quotient singularities.
Variety with quotient singularities

- X a projective variety with only quotient singularities. \mathcal{X}' associated smooth Deligne-Mumford stack.
Variety with quotient singularities

- X a projective variety with only quotient singularities.
 \mathcal{X} associated smooth Deligne-Mumford stack.

- $D^b(\text{Coh}(\mathcal{X}))$: finite type, saturated, Serre functor.
Variety with quotient singularities

- X a projective variety with only quotient singularities.
 \mathcal{X} associated smooth Deligne-Mumford stack.
- $D^b(\text{Coh}(\mathcal{X}))$: finite type, saturated, Serre functor.
- Example: $X = M/G$, $\mathcal{X} = [M/G]$.
 $D^b(\text{Coh}(\mathcal{X})) = D^b(\text{Coh}^G(M))$: derived category of equivariant sheaves.
Variety with quotient singularities

- X a projective variety with only quotient singularities.
 \mathcal{X} associated smooth Deligne-Mumford stack.
- $D^b(\text{Coh}(\mathcal{X}))$: finite type, saturated, Serre functor.
- Example: $X = M/G$, $\mathcal{X} = [M/G]$.
 $D^b(\text{Coh}(\mathcal{X})) = D^b(\text{Coh}^G(M))$: derived category of equivariant sheaves.
- Similar results to smooth case.
Variety with quotient singularities (Example)

- X' cone over Veronese variety $\mathbb{P}^{n-1} \subset \mathbb{P}_{d-1}^{(n+d-1)}$ of degree d.
Variety with quotient singularities (Example)

- X' cone over Veronese variety $\mathbb{P}^{n-1} \subset \mathbb{P}^{\binom{n+d-1}{d}-1}$ of degree d.
- $X' \cong \mathbb{A}^n / \mu_d$ has a quotient singularity.
Variety with quotient singularities (Example)

- X' cone over Veronese variety $\mathbb{P}^{n-1} \subset \mathbb{P}^{\binom{n+d-1}{d}-1}$ of degree d.
- $X' \cong \mathbb{A}^n/\mu_d$ has a quotient singularity.
- $f: X \to X'$ blowing-up at the vertex (resolution).
 $E \cong \mathbb{P}^{n-1}$ exceptional divisor.
Variety with quotient singularities (Example)

- X' cone over Veronese variety $\mathbb{P}^{n-1} \subset \mathbb{P}^{\binom{n+d-1}{d}-1}$ of degree d.
- $X' \cong \mathbb{A}^{n} / \mu_{d}$ has a quotient singularity.
- $f : X \to X'$ blowing-up at the vertex (resolution).
 $E \cong \mathbb{P}^{n-1}$ exceptional divisor.
- Canonical divisors: $K_{X} - f^{*}K_{X'} = \frac{n-d}{d} E.$
Variety with quotient singularities (Example)

- X' cone over Veronese variety $\mathbb{P}^{n-1} \subset \mathbb{P}^{(n+d-1)-1}$ of degree d.
- $X' \cong \mathbb{A}^n / \mu_d$ has a quotient singularity.
- $f : X \to X'$ blowing-up at the vertex (resolution). $E \cong \mathbb{P}^{n-1}$ exceptional divisor.
- Canonical divisors: $K_X - f^* K_{X'} = \frac{n-d}{d} E$.
- The direction of K may be different from direction of morphism.
\[\pi : X' \to X' : \text{associated DM stack, } \tilde{\mathcal{X}} = X \times_{X'} X', \mu : \tilde{\mathcal{X}} \to X, \mu' : \tilde{\mathcal{X}} \to X'. \]

Divisorial contractions and flips are similar.
Variety with quotient singularities (Example)

\[\pi : \mathcal{X}' \to X' : \text{associated DM stack}, \quad \tilde{\mathcal{X}} = \mathcal{X} \times \mathcal{X}', \quad \mathcal{X}', \quad \mu : \tilde{\mathcal{X}} \to \mathcal{X}, \quad \mu' : \tilde{\mathcal{X}} \to \mathcal{X}'. \]

Divisorial contractions and flips are similar. Corresponding SOD:

1. If \(n > d \), \(D^b(\text{Coh}(\mathcal{X})) = \langle \mathcal{O}_E(-n + d), \ldots, \mathcal{O}_E(-1), \mu_*(\mu'^*) D^b(\text{Coh}(\mathcal{X}')) \rangle. \)
\[\pi : \mathcal{X}' \to X' : \text{associated DM stack, } \tilde{X} = X \times_{\mathcal{X}} \mathcal{X}', \mu : \tilde{X} \to X, \mu' : \tilde{X} \to \mathcal{X}' \]

Divisorial contractions and flips are similar.

Corresponding SOD:

1. If \(n > d \), \(D^b(\text{Coh}(X)) = \langle \mathcal{O}_E(-n + d), \ldots, \mathcal{O}_E(-1), \mu_* (\mu')^* D^b(\text{Coh}(X')) \rangle \).
2. If \(n = d \), \(\mu_* \mu^* : D^b(\text{Coh}(X)) \cong D^b(\text{Coh}(X')) \).
Variety with quotient singularities (Example)

\[\pi : X' \rightarrow X' : \text{associated DM stack}, \quad \tilde{X} = X \times_{X'} X', \quad \mu : \tilde{X} \rightarrow X, \quad \mu' : \tilde{X} \rightarrow X'. \]

Divisorial contractions and flips are similar.

Corresponding SOD:

1. If \(n > d \), \(D^b(\text{Coh}(X)) = \langle \mathcal{O}_E(-n + d), \ldots, \mathcal{O}_E(-1), \mu'_*(\mu'^*)D^b(\text{Coh}(X')) \rangle \).
2. If \(n = d \), \(\mu'_*\mu^* : D^b(\text{Coh}(X)) \cong D^b(\text{Coh}(X')) \).
3. If \(n < d \), \(D^b(\text{Coh}(X')) = \langle \mathcal{O}_P(-d + n), \ldots, \mathcal{O}_P(-1), \mu'_*\mu^*D^b(\text{Coh}(X)) \rangle \).
Simple singularities

- \((A_k): \ x_0^{n+1} + x_1^2 + \cdots + x_n^2 = 0, \ k \geq 1\)
- \((D_k): \ x_0^{n-1} + x_0 x_1^2 + x_2^2 + \cdots + x_n^2 = 0, \ k \geq 4\)
- \((E_6): \ x_0^4 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0\)
- \((E_7): \ x_0 x_1 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0\)
- \((E_8): \ x_0^5 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0\)

correspond to Dynkin diagrams
many good properties
Simple singularities

- (A_k): $x_0^{n+1} + x_1^2 + \cdots + x_n^2 = 0$, $k \geq 1$
- (D_k): $x_0^{n-1} + x_0 x_1^2 + x_2^2 + \cdots + x_n^2 = 0$, $k \geq 4$
- (E_6): $x_0^4 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0$
- (E_7): $x_0 x_1 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0$
- (E_8): $x_0^5 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0$

These correspond to Dynkin diagrams
many good properties

- Case $n = 2$.
- Quotient singularities by $G \subset SL(2, \mathbb{C})$: $X = \mathbb{A}^2/G$.
Simple singularities

- (A_k): $x_0^{n+1} + x_1^2 + \cdots + x_n^2 = 0$, $k \geq 1$
- (D_k): $x_0^{n-1} + x_0x_1^2 + x_2^2 + \cdots + x_n^2 = 0$, $k \geq 4$
- (E_6): $x_0^4 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0$
- (E_7): $x_0x_1 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0$
- (E_8): $x_0^5 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0$

These correspond to Dynkin diagrams and have many good properties.

- Case $n = 2$.

- Quotient singularities by $G \subset SL(2, \mathbb{C})$: $X = \mathbb{A}^2/G$.

- **canonical** singularities: for every resolution $f : Y \to X$, $K_Y - f^*K_X \geq 0$
Simple singularities

- (A_k): $x_0^{n+1} + x_1^2 + \cdots + x_n^2 = 0$, $k \geq 1$
- (D_k): $x_0^{n-1} + x_0x_1^2 + x_2^2 + \cdots + x_n^2 = 0$, $k \geq 4$
- (E_6): $x_0^4 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0$
- (E_7): $x_0x_1 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0$
- (E_8): $x_0^5 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0$

These correspond to Dynkin diagrams with many good properties.

Case $n = 2$.

- Quotient singularities by $G \subset SL(2, \mathbb{C})$: $X = \mathbb{A}^2/G$.

canonical singularities: for every resolution $f : Y \to X$, $K_Y - f^*K_X \geq 0$

- minimal resolution = *crepant* resolution: $f : Y \to X$, $K_Y = f^*K_X$.
Simple singularities

- (A_k): $x_0^{n+1} + x_1^2 + \cdots + x_n^2 = 0$, $k \geq 1$
- (D_k): $x_0^{n-1} + x_0 x_1^2 + x_2^2 + \cdots + x_n^2 = 0$, $k \geq 4$
- (E_6): $x_0^4 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0$
- (E_7): $x_0^3 x_1 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0$
- (E_8): $x_0^5 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0$

These correspond to Dynkin diagrams and many good properties.

- **Case** $n = 2$.
- Quotient singularities by $G \subset SL(2, \mathbb{C})$: $X = \mathbb{A}^2/G$.

Canonical singularities: for every resolution $f : Y \to X$, $K_Y - f^*K_X \geq 0$

- Minimal resolution = crepant resolution: $f : Y \to X$, $K_Y = f^*K_X$.
- Exceptional locus = Dynkin diagram
Simple singularities

- (A_k): $x_0^{n+1} + x_1^2 + \cdots + x_n^2 = 0$, $k \geq 1$
- (D_k): $x_0^{n-1} + x_0x_1^2 + x_2^2 + \cdots + x_n^2 = 0$, $k \geq 4$
- (E_6): $x_0^4 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0$
- (E_7): $x_0^3x_1 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0$
- (E_8): $x_0^5 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0$

correspond to Dynkin diagrams
many good properties

- **Case n = 2.**
- Quotient singularities by $G \subset SL(2, \mathbb{C})$: $X = \mathbb{A}^2/G$.
- **canonical** singularities: for every resolution $f : Y \to X$, $K_Y - f^*K_X \geq 0$
- minimal resolution = crepant resolution: $f : Y \to X$, $K_Y = f^*K_X$.
- exceptional locus = Dynkin diagram
- McKay correspondence: $D^b(\text{Coh}(\mathcal{X})) \cong D^b(\text{Coh}(Y))$.

Yuujiro Kawamata University of Tokyo Categorical crepant resolutions of higher dimensional simple sing...
Simple singularities

- Case $n \geq 3$.
- *Terminal* singularities: for every resolution $f : Y \to X$, $K_Y - f^* K_X \geq 0$ and contains all exceptional divisors ($K_Y - f^* K_X = \sum e_j E_j$, $e_j > 0$, $\forall j$).
Simple singularities

- Case $n \geq 3$.
- *terminal* singularities: for every resolution $f : Y \to X$, $K_Y - f^*K_X \geq 0$ and contains all exceptional divisors ($K_Y - f^*K_X = \sum e_jE_j$, $e_j > 0$, $\forall j$).
- not quotient: no local fundamental group: $\pi_1(X \setminus \{P\}) = \{1\}$.
Simple singularities

- Case $n \geq 3$.

- *Terminal* singularities: for every resolution $f : Y \to X$, $K_Y - f^*K_X \geq 0$ and contains all exceptional divisors ($K_Y - f^*K_X = \sum e_jE_j$, $e_j > 0$, $\forall j$).

- Not quotient: no local fundamental group: $\pi_1(X \setminus \{P\}) = \{1\}$.

- No crepant resolution in most cases; except the case where *small resolutions* exist (no exceptional divisor): $n = 3$, type A_{2m+1}, D_{2m}.
Simple singularities

- **Case** $n \geq 3$.

- **Terminal** singularities: for every resolution $f : Y \to X$, $K_Y - f^*K_X \geq 0$ and contains all exceptional divisors ($K_Y - f^*K_X = \sum e_jE_j, e_j > 0, \forall j$).

- Not quotient: no local fundamental group: $\pi_1(X \setminus \{P\}) = \{1\}$.

- No crepant resolution in most cases; except the case where **small resolutions** exist (no exceptional divisor): $n = 3$, type A_{2m+1}, D_{2m}.

- We look for categorical crepant resolution by taking categorical minimal resolutions.
Type A_1 case (minimal resolution)

X: type A_1, ordinary double point, cone over $n - 1$-dimensional smooth quadric hypersurface $E \subset \mathbb{P}^n$.
Type A_1 case (minimal resolution)

X: type A_1, ordinary double point, cone over $n - 1$-dimensional smooth quadric hypersurface $E \subset \mathbb{P}^n$.

1. If $n = 2m$,
 \[D^b(\text{Coh}(E)) = \langle \Sigma_E(-n + 1), \mathcal{O}_E(-n + 2), \ldots, \mathcal{O}_E(-1), \mathcal{O}_E \rangle. \]

2. If $n = 2m + 1$, $D^b(\text{Coh}(E)) =$
 \[\langle \Sigma_E^+(−n + 1), \Sigma_E^−(−n + 1), \mathcal{O}_E(−n + 2), \ldots, \mathcal{O}_E(−1), \mathcal{O}_E \rangle. \]
 Σ_E, Σ_E^+, $\Sigma_E^−$ spinor bundles. [Kapranov]
Type A_1 case (minimal resolution)

X: type A_1, ordinary double point, cone over $n - 1$-dimensional smooth quadric hypersurface $E \subset \mathbb{P}^n$.

1. If $n = 2m$,

 $$D^b(\text{Coh}(E)) = \langle \Sigma_E(-n + 1), \mathcal{O}_E(-n + 2), \ldots, \mathcal{O}_E(-1), \mathcal{O}_E \rangle.$$

2. If $n = 2m + 1$, $D^b(\text{Coh}(E)) = $

 $$\langle \Sigma^+_E(-n + 1), \Sigma^-_E(-n + 1), \mathcal{O}_E(-n + 2), \ldots, \mathcal{O}_E(-1), \mathcal{O}_E \rangle.$$

 $\Sigma_E, \Sigma^+_E, \Sigma^-_E$ spinor bundles. [Kapranov]

$f : Y \to X$: blowing up at the origin is a resolution.

E: exceptional divisor.
Type A_1 case (minimal resolution)

X: type A_1, ordinary double point, cone over $n - 1$-dimensional smooth quadric hypersurface $E \subset \mathbb{P}^n$.

1. If $n = 2m$,

 $$D^b(\text{Coh}(E)) = \langle \Sigma_E(-n + 1), \mathcal{O}_E(-n + 2), \ldots, \mathcal{O}_E(-1), \mathcal{O}_E \rangle.$$

2. If $n = 2m + 1$, $D^b(\text{Coh}(E)) =$

 $$\langle \Sigma^+_E(-n + 1), \Sigma^-_E(-n + 1), \mathcal{O}_E(-n + 2), \ldots, \mathcal{O}_E(-1), \mathcal{O}_E \rangle.$$

 Σ_E, Σ^+_E, Σ^-_E spinor bundles. [Kapranov]

$f : Y \rightarrow X$: blowing up at the origin is a resolution.

E: exceptional divisor.

Canonical divisors: $K_Y = f^* K_X + (n - 2)E$.
Type A_1 case (minimal resolution)

X: type A_1, ordinary double point, cone over $n - 1$-dimensional smooth quadric hypersurface $E \subset \mathbb{P}^n$.

1. If $n = 2m$,
 \[D^b(\text{Coh}(E)) = \langle \Sigma_E(-n + 1), \mathcal{O}_E(-n + 2), \ldots, \mathcal{O}_E(-1), \mathcal{O}_E \rangle. \]

2. If $n = 2m + 1$,
 \[D^b(\text{Coh}(E)) = \langle \Sigma^+_E(-n + 1), \Sigma^-_E(-n + 1), \mathcal{O}_E(-n + 2), \ldots, \mathcal{O}_E(-1), \mathcal{O}_E \rangle. \]

 Σ_E, Σ^+_E, Σ^-_E spinor bundles. [Kapranov]

$f : Y \to X$: blowing up at the origin is a resolution.

E: exceptional divisor.

canonical divisors: $K_Y = f^*K_X + (n - 2)E$.

Corresponding SOD: there exists a triangulated subcategory (categorical minimal resolution) \mathcal{D}_X s.t.

1. If $n = 2m$,
 \[D^b(\text{Coh}(Y)) = \langle \mathcal{O}_E(-n + 2), \ldots, \mathcal{O}_E(-1), \mathcal{D}_X \rangle. \]

2. If $n = 2m + 1$,
 \[D^b(\text{Coh}(Y)) = \langle \mathcal{O}_E(-n + 2), \ldots, \mathcal{O}_E(-1), \Sigma^+_E(-1), \mathcal{D}_X \rangle. \]
Type A_1 case (Calabi-Yau property)

- $\text{Perf}(X) \subset D^b(\text{Coh}(X))$: triangulated subcategory of perfect complexes (locally finite complexes of locally free sheaves).
Type A_1 case (Calabi-Yau property)

- $\text{Perf}(X) \subset D^b(\text{Coh}(X))$: triangulated subcategory of perfect complexes (locally finite complexes of locally free sheaves).
- Equal if X is smooth.
 Serre dual: homology and cohomology.
Type A_1 case (Calabi-Yau property)

- $\text{Perf}(X) \subset D^b(\text{Coh}(X))$: triangulated subcategory of perfect complexes (locally finite complexes of locally free sheaves).
- Equal if X is smooth.
 Serre dual: homology and cohomology.
- $\text{Perf}(X) \subset \mathcal{D}_X \subset D^b(\text{Coh}(Y))$.
 Intersection homology.
- The right orthogonal
 $\text{Perf}(X)^\perp = \{ a \in D^b(\text{Coh}(Y)) \mid f_* a = 0 \}$.

Type A_1 case (Calabi-Yau property)

- $\text{Perf}(X) \subset D^b(\text{Coh}(X))$: triangulated subcategory of perfect complexes (locally finite complexes of locally free sheaves).
- Equal if X is smooth.
 Serre dual: homology and cohomology.
- $\text{Perf}(X) \subset D_X \subset D^b(\text{Coh}(Y))$. Intersection homology.
- The right orthogonal
 \[\text{Perf}(X)^\perp = \{ a \in D^b(\text{Coh}(Y)) \mid f_*a = 0 \}. \]

1. $c = \Sigma_E(-1)$, if $n = 2m$.
2. $c = \text{Conv}(\Sigma_E^-(1) \to \Sigma_E^+(1)[2])$, if $n = 2m + 1$.
Type A_1 case (Calabi-Yau property)

- $\text{Perf}(X) \subset D^b(\text{Coh}(X))$: triangulated subcategory of perfect complexes (locally finite complexes of locally free sheaves).
- Equal if X is smooth.
 Serre dual: homology and cohomology.
- $\text{Perf}(X) \subset \mathcal{D}_X \subset D^b(\text{Coh}(Y))$.
 Intersection homology.
- The right orthogonal
 $\text{Perf}(X)^\perp = \{ a \in D^b(\text{Coh}(Y)) \mid f_* a = 0 \}$.

1. $c = \Sigma_E(-1)$, if $n = 2m$.
2. $c = \text{Conv}(\Sigma_E^-(1) \to \Sigma_E^+(1)[2])$, if $n = 2m + 1$.

- $\{ a \in \mathcal{D}_X \mid f_* a = 0 \} = \langle c \rangle$.
Type A_1 case (Calabi-Yau property)

- $\text{Perf}(X) \subset D^b(\text{Coh}(X))$: triangulated subcategory of perfect complexes (locally finite complexes of locally free sheaves).
- Equal if X is smooth.
 - Serre dual: homology and cohomology.
- $\text{Perf}(X) \subset D_X \subset D^b(\text{Coh}(Y))$.
 - Intersection homology.
- The right orthogonal
 $\text{Perf}(X)^\perp = \{ a \in D^b(\text{Coh}(Y)) \mid f_*a = 0 \}$.

1. $c = \Sigma_E(-1)$, if $n = 2m$.
2. $c = \text{Conv}(\Sigma_E^-(1) \to \Sigma_E^+(1)[2])$, if $n = 2m + 1$.

- $\{ a \in D_X \mid f_*a = 0 \} = \langle c \rangle$.

1. $S^D_X(c) = c[2]$, if $n = 2m$. (relatively 2-Calabi-Yau category)
2. $S^D_X(c) = c[3]$, if $n = 2m + 1$. (relatively 3-Calabi-Yau category)
Type A_2 case (minimal resolution)

- X: type A_2.

Type A_2 case (minimal resolution)

- X: type A_2.
- $f : Y \rightarrow X$: blowing up at the origin is a resolution.
- E: exceptional divisor. cone over $(n - 2)$-dimensional quadric hypersurface E'.
Type A_2 case (minimal resolution)

- X: type A_2.
- $f : Y \to X$: blowing up at the origin is a resolution.
- E: exceptional divisor. cone over $(n - 2)$-dimensional quadric hypersurface E'.
- Canonical divisors: $K_Y = f^*K_X + (n - 2)E$.
Type A_2 case (minimal resolution)

- X: type A_2.
- $f : Y \to X$: blowing up at the origin is a resolution.
- E: exceptional divisor. cone over $(n - 2)$-dimensional quadric hypersurface E'.
- Canonical divisors: $K_Y = f^* K_X + (n - 2)E$.
- Corresponding SOD: there exists a triangulated subcategory (categorical minimal resolution) \mathcal{D}_X s.t.

 $D^b(\text{Coh}(Y)) = \langle \mathcal{O}_E(-n + 2), \ldots, \mathcal{O}_E(-1), \mathcal{D}_X \rangle$.
Type A_2 case (Calabi-Yau property)

1. $c = \Sigma_E(-1)$, if $n = 2m + 1$.
2. $c^\pm = \Sigma_E^\pm(-1)$, if $n = 2m$.
Type A_2 case (Calabi-Yau property)

1. $c = \Sigma_E(-1)$, if $n = 2m + 1$.
2. $c^\pm = \Sigma_E^\pm(-1)$, if $n = 2m$.

$\Rightarrow \{ a \in \mathcal{D}_X | f_*a = 0 \} = \langle c \rangle$ or $= \langle c^+, c^- \rangle$.
Type A_2 case (Calabi-Yau property)

1. $c = \Sigma_E(-1)$, if $n = 2m + 1$.
2. $c^\pm = \Sigma^\pm_E(-1)$, if $n = 2m$.

- $\{a \in \mathcal{D}_\mathcal{X} \mid f_*a = 0\} = \langle c \rangle$ or $= \langle c^+, c^- \rangle$.
- Both are relatively 2-Calabi-Yau categories: $S_{\mathcal{D}(\mathcal{X})}(c) = c[2]$, and $S_{\mathcal{D}(\mathcal{X})}(c^\pm) = c^\pm[2]$.
Type E_6 case (minimal resolution)

- X: type E_6, $n = 3$.
Type E_6 case (minimal resolution)

- X: type E_6, $n = 3$.
- $f : Y \rightarrow X$: a resolution with exceptional divisors $E_1 \cup E_2$. E_1 a singular surface, $E_2 \cong \mathbb{P}^2$.
Type E_6 case (minimal resolution)

- X: type E_6, $n = 3$.
- $f: Y \rightarrow X$: a resolution with exceptional divisors $E_1 \cup E_2$. E_1 a singular surface, $E_2 \cong \mathbb{P}^2$.
- Canonical divisors: $K_Y = f^* K_X + E_1 + E_2$.
Type E_6 case (minimal resolution)

- X: type E_6, $n = 3$.
- $f : Y \rightarrow X$: a resolution with exceptional divisors $E_1 \cup E_2$. E_1 a singular surface, $E_2 \cong \mathbb{P}^2$.
- Canonical divisors: $K_Y = f^* K_X + E_1 + E_2$.
- Corresponding SOD: there exists a triangulated subcategory (categorical minimal resolution) \mathcal{D}_X s.t.
 \[D^b(\text{Coh}(Y)) = \langle \mathcal{O}_Y(E_2)/\mathcal{O}_Y, \mathcal{O}_Y(E_1 + E_2)/\mathcal{O}_Y, \mathcal{D}_X \rangle. \]
There are sheaves c_1, c_2, c_3 supported on $E_1 \cup E_2$.

$$0 \rightarrow c_1 \rightarrow c_2 \rightarrow c_3 \rightarrow 0.$$
Type E_6 case (Calabi-Yau property)

- There are sheaves c_1, c_2, c_3 supported on $E_1 \cup E_2$.

 $0 \rightarrow c_1 \rightarrow c_2 \rightarrow c_3 \rightarrow 0$.

- $\{ a \in \mathcal{D}_X \mid f_* a = 0 \} = \langle c_1, c_2 \rangle$.
Type E_6 case (Calabi-Yau property)

- There are sheaves c_1, c_2, c_3 supported on $E_1 \cup E_2$.

 $0 \to c_1 \to c_2 \to c_3 \to 0$.

- $\{a \in \mathcal{D}_X \mid f_* a = 0\} = \langle c_1, c_2 \rangle$.

- $S_{\mathcal{D}(X)}(c_1) = c_2[2], S_{\mathcal{D}(X)}(c_2) = c_3[2], S_{\mathcal{D}(X)}(c_3) = c_1[3]$.

- $S_{\mathcal{D}(X)}^3 \cong [7]$. (relatively $7/3$-Calabi-Yau category)
Type E_6 case (Calabi-Yau property)

- There are sheaves c_1, c_2, c_3 supported on $E_1 \cup E_2$.

 $0 \rightarrow c_1 \rightarrow c_2 \rightarrow c_3 \rightarrow 0$.

- $\{a \in \mathcal{D}_X \mid f_* a = 0\} = \langle c_1, c_2 \rangle$.

- $S_{\mathcal{D}(X)}(c_1) = c_2[2], S_{\mathcal{D}(X)}(c_2) = c_3[2], S_{\mathcal{D}(X)}(c_3) = c_1[3]$.

- $S_{\mathcal{D}(X)}^3 \cong [7]$. (relatively 7/3-Calabi-Yau category)

- Question: Let X be a variety with canonical singularities.
 Then does there exist a categorical minimal resolution whose relative part has a fractionally crepant filtration?